معرفة تأثير النظام الغذائي الكيتوني على وظيفة الغدة الدرقية
DOI:
https://doi.org/10.54702/f687pe37الكلمات المفتاحية:
النظام الغذائي الكيتوني، وظيفة الغدة الدرقية، T3، T4، TSHالملخص
تهدف هذه الدراسة إلى تسليط الضوء على العلاقة بين صحة الغدة الدرقية والنظام الغذائي الكيتوني. شملت هذه الدراسة 120 رجلاً تتراوح أعمارهم بين (25-55) سنة، وتم تقسيمهم إلى مجموعتين. المجموعة الأولى تضم 70 رجلاً يتبعون نظاماً غذائياً يعتمد على الكربوهيدرات، والمجموعة الثانية تضم 50 رجلاً يتبعون نظاماً غذائياً كيتونياً؛ وتم تحليل مصل الدم لكلا المجموعتين TSH, T4, T3 و HbA1c. أظهرت النتائج انخفاضاً كبيراً P≤0.05 في مستويات TSH, T3, و T4 في الغدة الدرقية. كما أظهرت نتائج HbA1c انخفاضاً كبيراً P≤0.05 في المجموعة الكيتونية مقارنةً بأولئك الذين يتبعون نظاماً غذائياً يعتمد على الكربوهيدرات. وفي الختام، يرتبط النظام الغذائي الكيتوني بشكل كبير بنتائج اختبارات وظائف الغدة الدرقية. وهذا ما يحقق احد اهداف التنمية المستدامة للامم المتحدة في العراق (الصحة الجيدة).
المراجع
Rastoldo, G., & Tighilet, B. (2023). Thyroid Axis and Vestibular Physiopathology: From Animal Model to Pathology. International journal of molecular sciences, 24(12), 9826. https://doi.org/10.3390/ijms24129826
Vancamp, P., & Demeneix, B. A. (2020). Is the Observed Decrease in Body Temperature During Industrialization Due to Thyroid Hormone-Dependent Thermoregulation Disruption? Frontiers in endocrinology, 11, 470. https://doi.org/10.3389/fendo.2020.00470
Yavuz, S., Salgado Nunez Del Prado, S., & Celi, F. S. (2019). Thyroid Hormone Action and Energy Expenditure. Journal of the Endocrine Society, 3(7), 1345–1356. https://doi.org/10.1210/js.2018-00423
Nirmalan, N., & Nirmalan, M. (2020). Hormonal control of metabolism: regulation of plasma glucose. Anaesthesia & Intensive Care Medicine, 21(11), 578–583. https://doi.org/10.1016/j.mpaic.2020.08.002
Kalamian, M. (2020). The Therapeutic Ketogenic Diet: Harnessing Glucose, Insulin, and Ketone Metabolism. Integrative and Functional Medical Nutrition Therapy, 335–365. https://doi.org/10.1007/978-3-030-30730-1_22
Al-Suhaimi, E. A., & Khan, F. A. (2022). Thyroid Glands: Physiology and Structure. Emerging Concepts in Endocrine Structure and Functions, 133–160. https://doi.org/10.1007/978-981-16-9016-7_5
De Stefano, M. A., Ambrosio, R., Porcelli, T., Orlandino, G., Salvatore, D., & Luongo, C. (2021). Thyroid Hormone Action in Muscle Atrophy. Metabolites, 11(11), 730. https://doi.org/10.3390/metabo11110730
Basolo, A., Magno, S., Santini, F., & Ceccarini, G. (2022). Ketogenic Diet and Weight Loss: Is There an Effect on Energy Expenditure? Nutrients, 14(9), 1814. https://doi.org/10.3390/nu14091814
Iacovides, S., Maloney, S. K., Bhana, S., Angamia, Z., & Meiring, R. M. (2022). Could the ketogenic diet induce a shift in thyroid function and support a metabolic advantage in healthy participants? A pilot randomized-controlled-crossover trial. PloS one, 17(6), e0269440. https://doi.org/10.1371/journal.pone.0269440
Iacovides, S., & Meiring, R. M. (2018). The effect of a ketogenic diet versus a high-carbohydrate, low-fat diet on sleep, cognition, thyroid function, and cardiovascular health independent of weight loss: study protocol for a randomized controlled trial. Trials, 19(1), 62. https://doi.org/10.1186/s13063-018-2462-5
Zhang, W., Guo, X., Chen, L., Chen, T., Yu, J., Wu, C., & Zheng, J. (2021). Ketogenic Diets and Cardio-Metabolic Diseases. Frontiers in endocrinology, 12, 753039. https://doi.org/10.3389/fendo.2021.753039
Ashtary-Larky, D., Bagheri, R., Bavi, H., Baker, J. S., Moro, T., Mancin, L., & Paoli, A. (2022). Ketogenic diets, physical activity and body composition: a review. The British journal of nutrition, 127(12), 1898–1920. https://doi.org/10.1017/S0007114521002609
Paoli, A., Bianco, A., Moro, T., Mota, J. F., & Coelho-Ravagnani, C. F. (2023). The Effects of Ketogenic Diet on Insulin Sensitivity and Weight Loss, Which Came First: The Chicken or the Egg? Nutrients, 15(14), 3120. https://doi.org/10.3390/nu15143120
Zhu, H., Bi, D., Zhang, Y., Kong, C., Du, J., Wu, X., Wei, Q., & Qin, H. (2022). Ketogenic Diet for human diseases: the underlying mechanisms and potential for clinical implementations. Signal transduction and targeted therapy, 7(1), 11. https://doi.org/10.1038/s41392-021-00831-w
Partsalaki, I., Markantes, G. K., & Michalaki, M. A. (2024). Low-Glycemic Load Diets and Thyroid Function: A Narrative Review and Future Perspectives. Nutrients, 16(3), 347. https://doi.org/10.3390/nu16030347
Rial-Pensado, E., Rivas-Limeres, V., Grijota-Martínez, C., Rodríguez-Díaz, A., Capelli, V., Barca-Mayo, O., Nogueiras, R., Mittag, J., Diéguez, C., & López, M. (2022). Temperature modulates systemic and central actions of thyroid hormones on BAT thermogenesis. Frontiers in physiology, 13, 1017381. https://doi.org/10.3389/fphys.2022.1017381
Giammanco, M., Di Liegro, C. M., Schiera, G., & Di Liegro, I. (2020). Genomic and Non-Genomic Mechanisms of Action of Thyroid Hormones and Their Catabolite 3,5-Diiodo-L-Thyronine in Mammals. International journal of molecular sciences, 21(11), 4140. https://doi.org/10.3390/ijms21114140
Walczak, K., & Sieminska, L. (2021). Obesity and Thyroid Axis. International journal of environmental research and public health, 18(18), 9434. https://doi.org/10.3390/ijerph18189434
Bouazza, A., Favier, R., Fontaine, E., Leverve, X., & Koceir, E. A. (2022). Potential Applications of Thyroid Hormone Derivatives in Obesity and Type 2 Diabetes: Focus on 3,5-Diiodothyronine (3,5-T2) in Psammomys obesus (Fat Sand Rat) Model. Nutrients, 14(15), 3044. https://doi.org/10.3390/nu14153044
Cooper, I. D., Sanchez-Pizarro, C., Norwitz, N. G., Feldman, D., Kyriakidou, Y., Edwards, K., ... & Soto-Mota, A. (2023). Thyroid markers and body composition predict LDL-cholesterol change in lean, healthy women on a ketogenic diet: experimental support for the lipid energy model. Frontiers in Endocrinology, 14, 1326768. https://doi.org/10.3389/fendo.2023.1326768
Kowalik, M. A., Columbano, A., & Perra, A. (2018). Thyroid Hormones, Thyromimetics and Their Metabolites in the Treatment of Liver Disease. Frontiers in endocrinology, 9, 382. https://doi.org/10.3389/fendo.2018.00382
Dowis, K., & Banga, S. (2021). The Potential Health Benefits of the Ketogenic Diet: A Narrative Review. Nutrients, 13(5), 1654. https://doi.org/10.3390/nu13051654
Koerich, A. C. C., Borszcz, F. K., Thives Mello, A., de Lucas, R. D., & Hansen, F. (2023). Effects of the ketogenic diet on performance and body composition in athletes and trained adults: a systematic review and Bayesian multivariate multilevel meta-analysis and meta-regression. Critical reviews in food science and nutrition, 63(32), 11399–11424. https://doi.org/10.1080/10408398.2022.2090894
Landry, M. J., Crimarco, A., Perelman, D., Durand, L. R., Petlura, C., Aronica, L., Robinson, J. L., Kim, S. H., & Gardner, C. D. (2021). Adherence to Ketogenic and Mediterranean Study Diets in a Crossover Trial: The Keto-Med Randomized Trial. Nutrients, 13(3), 967. https://doi.org/10.3390/nu13030967
التنزيلات
منشور
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2024 الرياضة المعاصرة
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.